The COVID-19 pandemic has forced retail to innovate for survival. BII presents its assessment of how brick and mortar retail can apply technologies to assist in its re-emergence and to ultimately utilize human associates to their greatest potential.
Big Data is an integral aspect of predictive analytics for luxury retail. The complexity of social media presents an abundance of feedback channels that make real time 360 customer feedback challenging. Added to the challenge of real-time feeds is the distortion that reselling has created for luxury brands. It is difficult to discern whether a customer’s feedback relates to the actual brand quality or to the reseller experience. Also, once an item is sold, luxury manufacturers do not benefit from any ensuing resells. With the luxury reseller market attracting sustainability conscious shoppers and a broader range of shoppers who love luxury brand names/quality but cannot afford the high price tag, it will be increasingly challenging for luxury manufacturers to sustain their exclusivity.
Introduction
Luxury brands are synonymous with premium and quality. These brands enjoy a high value for their exceptional quality and aesthetic appeal. From the days in the 1800s when Thierry Hermès was called upon to make saddles, bridles and leather riding gear for royal horse carriages, and also in the 1800s when 16-year old Louis Vuitton became a trunkmaster and designed sturdy yet attractive luggage pieces for the wealthy traveler, luxury brand manufacturers have done a tremendous job to separate their perceived and intrinsic values from competitors. It is not surprising that year-after-year, the same luxury brands have ranked as the top market influencers. With the advent of social media, retail in general has been able to closely connect with voice of customer. There are moments that this has been good and moments where it has been not so good. The real-time feeds from around the world have given good press and bad press. When it is good press, a brand benefits with surges in product demand. When it is bad press, brands not only lose market share, but damage to reputation can prolong the loss recovery. Managing social media trolling is important to luxury manufacturers seeking to maintain their brand exclusivity. The scatter plot below illustrates an example of a positive tweet data point.
Positive Tweet Data Point
The Meta Data Experience
Amassing customer data from a myriad of sources provides rich
insight for predictive analytics. With
an eye on privacy, customer data must not share personal elements like name,
social security number, payment information, etc. As countries instill strict guidelines on
data privacy, meta data will be employed more to allow for data to be freely
shared. Meta data is essentially data
about a customer that is stripped of personal elements. The Sankey diagram below is an example of
meta data about global Spice Chip membership demographics.
Sankey Diagram
Big Data meta data has massive insight potential for customer analytics. A lot can be gathered about a brand that can shape future buying outcomes. An example of this is seen in the correlation and predictive plots below. A correlation is indicated between income and type of Mercedes Maybach® preference. Then, a predictive equation is identified to predict preference of type of Mercedes Maybach® of future customers within income levels.
Correlation and Predictive Plotting
Through the use of Big Data in analysis, we can acquire data
points from real-time data, processing current data and historical data in
business operations. The ability to
accomplish successful analysis of the data points in a continuous learning cycle
is what is coined as Continuous Intelligence, and introduces machine
learning and artificial intelligence methods in predictive analyses. With
automation taking such a prominent role in analytics, luxury retail
manufacturers should be encouraged to expand their data sources to include not
only data points about their respective products but also those of equal
competitors. Doing so will allow
comparative analyses across luxury brands that can lead to product development partnerships
like the Hermes® Apple® Watch.
Brand Democratization and Exclusivity
Luxury retail manufactures have defined their respective
brands on high prices and the premises of scarcity and exclusivity. To achieve this aim, a select customer
segment is targeted that can afford higher than normal prices for products of
high quality. This customer segment is exploited
on the basis of social status and conspicuous consumption. By
limiting the production of certain high-priced goods, this customer segment will
accept delayed gratification as an assumption of scarcity. The exclusivity model has proven successful
with the Baby Boomer generation, and luxury retail has grown to a multi-billion
dollar industry.
While there is no clear relationship between income and
democratization, generations beyond the Baby Boomers have redefined their
consumption habits. Gen X and Millennials
emphasize sustainability and are willing to acquire personal goods through
consignment channels. The emphasis is
true across income strata. To attract these consumer groups, luxury
retail manufacturers will need to refine their exclusivity approach or offer
something in the alternative. As
example, luxury car companies have expanded their lines to include affordable
offerings like the Mercedes® A class. Recently, Lambroghini® released an SUV version after
long maintaining its signature line of luxury sports cars. Meanwhile, Ferrari® has remained true to its
brand and stayed in its lane of luxury sports cars.
In the luxury apparel and accessories arena, brand democratization
has led to a proliferation of consignment resellers of high-end luxury
goods. This market has successfully bit
into the luxury retail manufacturing profits by selling salvaged high-end goods
at lower price points due to their consignment status. The consignment reseller channel also provides
customers who are willing to pay high prices the ability to acquire vintage
luxury items like older models of Hermès® Birkin bags. More and more, luxury retail manufacturers
will need to step up their game to continually refresh their branding and
product offerings that cater to their Baby Boomer stalwart customer base and bring
in Gen X and Millennials.
It remains to be seen how far luxury retail manufacturers
will go to acquire loyal Gen X and Millennial customers. Regardless of the decision to acquire these
customers, luxury retail manufacturers will need to monitor brand sentiment
from wherever it comes. Social media has
given rise to consumers sharing their opinions in real time. Positive comments are helpful to promoting
brands while negative comments can sway customers away. Customer loyalty is constantly challenged by
momentary ticks and tweets. Assessing
the impact of sentiment and discerning if the sentiment is directed toward the
brand or toward the experience with acquiring it is necessary for luxury retail
manufacturers to face the challenge to brand exclusivity that consignment reselling
poses.
Sentiment Analysis and the Taguchi Loss Function
The
Loss Function is part of a methodology to improve quality and reduce costs
developed by Genichi Taguchi, a Japanese engineer who studied industrial
signal-to-noise ratio experiments. The Loss
Function is a quadratic equation that when plotted produces a hyperbola. The model below illustrates the concept of
how an increase in variation away from specification limits (represented by
lower or L.S.L. and upper or U.S.L., respectively) will exponentially increase
customer dissatisfaction.
Taguchi Loss Function
Applying the Loss Function to our discussion about brand democratization and exclusivity involves analyzing emotionality in texts by measuring sentiment and intensity. Also needed is to discern where the sentiment is directed – on the brand or on the purchase experience – measured through adding the variable of purchase location. For emotionality in texts, we could assign weighted values to a spectrum of intensity on a scale of negative to positive. For our Loss Function, the target value would be a positive tweet about the brand having purchase experience with the manufacturer. The outer or specification limits would be negative tweets (L.S.L.) or positive tweets having purchase experience through alternative channels like consignment resellers (U.S.L.). So, any tweet we encounter that falls in the upper and lower specification regions will be deemed as a contributor to the loss of customer that the manufacturer will experience. The hyperbola of a loss example is shown below.
Brand Loss Function
Conclusion
This discussion has presented the challenge of maintaining luxury brand exclusivity as new generations change views about their shopping experiences. The Baby Boomer generation was a loyal following to luxury brands and this contributed to the multi-billion dollar establishment luxury retail has become. With differing views about sustainability and cause-related buying habits, Gen X and Millennials are emphasizing brand democratization. With this challenge to brand exclusivity, luxury retail manufacturers must rely more and more on Big Data analytics to guide them through the complexity of social media in the abundance of feedback channels.
Radon, A. (2012). Luxury Brand Exclusivity Strategies – An Illustration of a Cultural Collaboration. Journal of Business Administration Research, 1(1), 106–110. doi: 10.5430/jbar.v1n1p106
Rød, E.G., Knutsen, C.H. & Hegre, H. The determinants of democracy: a sensitivity analysis. Public Choice (2019). Retrieved March 7, 2020 from https://doi.org/10.1007/s11127-019-00742-z
Dr. Banks is CEO of I-Meta Inc, a company specializing in Big Data and retail analytics. She combined her passions for data science and luxury shopping when she invented the patented Spice Chip® technology system. She holds several degrees and certifications with over 20 years of experience in deploying and optimizing global systems. Dr. Banks has served on the Board of Examiners for the Malcolm Baldrige National Quality Award and understands the connecting points that successful organizations follow to meet the needs of their customers. Her other government service consists of having served honorably in the U.S. Air Force and worked for the Central Intelligence Agency. In her previous job, Dr. Banks was Director of Continuous Improvement and Innovation for a biopharmaceutical company. Her industry experience spans biopharma, retail, software, and gaming, to name a few. Throughout her career, Dr. Banks has developed applications and managed the deployment of large-scale database systems and global technology projects.